Hello everyone! 👋

This is a follow-up post to the previous one, long story short I started taking the course from fast.ai to learn more about Deep Learning. I’ve built a simple Image Tagging model using the Resnet architecture (don’t worry about the paper I did not read it, GitHub Copilot suggested it while writing this blog post).

FastAI is a high-level Python library that allows you to train complex ML models really fast and efficiently. After training my model, I’ve exported it into the ONNX format and in this post we’re using the model in a Java application.

The model will do image keywording. You can give it an image, and it will give you some keywords that describe the image. If you’re a photographer, you can use this model to tag your images and make them easier to find. 📸

Java ONNX Runtime

Create a new Java with a Maven project and add the following dependency:

1
2
3
4
5
    <dependency>
        <groupId>com.microsoft.onnxruntime</groupId>
        <artifactId>onnxruntime</artifactId>
        <version>1.15.1</version>
    </dependency>

This is the only dependency that we need.

The Model

If you want to follow along, you can grab the model from here

The model classes are available here. You will need to convert them into a Java array or list.

I did save my categories in the following Categories class in the following format: Categories.java:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
package main.java;

import java.util.Arrays;
import java.util.List;

public class Categories {
    public static List<String> CATEGORIES = Arrays.asList(
        "1",
        "2",
        "3",
    );
}

The Code

In order to obtain the predictions from an image we need the model, the categories, and the image that we’re going to keyword. We’ll need to do the following steps:

  1. Load the model
  2. Create an input tensor
  3. Run the model
  4. Get the output tensor
  5. Get the predictions

The code that does this is the following:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    public void run() throws OrtException {
        System.out.println("Onnx Runtime Java Image Prediction");

        // 1. Load model.
        var env = OrtEnvironment.getEnvironment();
        var session = env.createSession(this.modelPath, new OrtSession.SessionOptions());

        // Get input and output names
        var inputName = session.getInputNames().iterator().next();
        var outputName = session.getOutputNames().iterator().next();

        // 2. Create input tensor
        OnnxTensor inputTensor = OnnxTensor.createTensor(env, processImage(this.imagePath));

        // 3. Run the model.
        var inputs = Map.of(inputName, inputTensor);
        var results = session.run(inputs);

        // 4. Get output tensor
        var outputTensor = results.get(outputName);

        if (outputTensor.isPresent()) {
            // 5. Get prediction results
            float[][] floatBuffer = (float[][]) outputTensor.get().getValue();

            ArrayList<String> predictions = new ArrayList<String>();

            // filter buffer by treashold
            for (int i = 0; i < floatBuffer[0].length; i++) {
                if (floatBuffer[0][i] > -0.5) {
                    predictions.add(String.format("%s: %f - %s", i, floatBuffer[0][i], Categories.CATEGORIES.get(i)));
                }
            }

            // Print results
            System.out.println("Predictions: ");
            for (String prediction : predictions) {
                System.out.println(prediction);
            }
        } else {
            System.out.println("Failed to predict!");
        }
    }

And of course step two: 2. Create an input tensor is not included in the code from above because it’s a little bit complicated. The code is in the processImage(this.imagePath) method.

If you run the program, you’ll get the following output, depending on the image that you’re using:

1
2
3
4
5
6
7
Onnx Runtime Java Image Prediction
Predictions: 
25: -0.032844 - architecture
150: 0.288728 - day
381: -0.130801 - nature
387: 0.343386 - no people
404: 1.527045 - outdoors

Processing the image

This section describes the code from the processImage method and the second step: 2. Create an input tensor.

The input tensor is a 4-dimensional array of floats. The dimensions are: 1 x 3 x 224 x 224.

The first dimension is the batch size. In our case, we’re only going to predict one image at a time so the batch size is 1.

The second dimension is the number of channels. We’re using RGB images, so we have 3 channels.

The last two dimensions are the width and height of the image. In our case, we’re using 224x224 images.

Note: I had no idea that the first dimension is the batch size, GitHub copilot generated that paragraph 😲.

The process image code does the following things:

  1. Read the image
  2. Crop the image
  3. Resize the image to 224x224
  4. Computes the tensor values from the RGB.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    public float[][][][] processImage(String imagePath) {
        try {
            float[][][][] tensorData = new float[1][3][224][224];
            var mean = new float[] { 0.485f, 0.456f, 0.406f };
            var standardDeviation = new float[] { 0.229f, 0.224f, 0.225f };

            // Read image
            File imageFile = new File(imagePath);
            var image = ImageIO.read(imageFile);

            // crop image
            int width = image.getWidth();
            int height = image.getHeight();
            int startX = 0;
            int startY = 0;
            if (width > height) {
                startX = (width - height) / 2;
                width = height;
            } else {
                startY = (height - width) / 2;
                height = width;
            }
            image = image.getSubimage(startX, startY, width, height);

            // DEBUG save image to disk
            // ImageIO.write(image, "jpg", new File("C:\\Users\\NUCULABS\\IdeaProjects\\untitled\\src\\test\\java\\main\\resources\\debug.jpg"));

            // Resize image
            var resizedImage = image.getScaledInstance(224, 224, 4);

            // Process image
            BufferedImage scaledImage = new BufferedImage(224, 224, BufferedImage.TYPE_INT_ARGB);

            scaledImage.getGraphics().drawImage(resizedImage, 0, 0, null);

            for (var y = 0; y < scaledImage.getHeight(); y++) {
                for (var x = 0; x < scaledImage.getWidth(); x++) {
                    int pixel = scaledImage.getRGB(x,y);

                    // Get RGB values
                    tensorData[0][0][y][x] = (((pixel >> 16) & 0xFF) / 255f - mean[0]) / standardDeviation[0];
                    tensorData[0][1][y][x] = (((pixel >> 16) & 0xFF) / 255f - mean[1]) / standardDeviation[1];
                    tensorData[0][2][y][x] = (((pixel >> 16) & 0xFF) / 255f - mean[2]) / standardDeviation[2];
                }
            }

            return tensorData;
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }

Conclusion

This is how you can use the ONNX Runtime Java API to make predictions from images.

Thank you for reading! If you have any questions, please leave a comment below. ❤️

Full code:

Full code for the Program.java file:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
package main.java;

import ai.onnxruntime.OnnxTensor;
import ai.onnxruntime.OrtEnvironment;
import ai.onnxruntime.OrtException;
import ai.onnxruntime.OrtSession;
import javax.imageio.ImageIO;

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Map;

public class Program {
    String modelPath = "C:\\Users\\nutiu\\IdeaProjects\\untitled\\src\\test\\java\\main\\resources\\resnet34_10_epochs.onnx";
    String imagePath = "C:\\Users\\nutiu\\Downloads\\4.jpg";


    public float[][][][] processImage(String imagePath) {
        try {
            float[][][][] tensorData = new float[1][3][224][224];
            var mean = new float[] { 0.485f, 0.456f, 0.406f };
            var standardDeviation = new float[] { 0.229f, 0.224f, 0.225f };

            // Read image
            File imageFile = new File(imagePath);
            BufferedImage bufferedImage = ImageIO.read(imageFile);

            // Crop image
            int width = image.getWidth();
            int height = image.getHeight();
            int startX = 0;
            int startY = 0;
            if (width > height) {
                startX = (width - height) / 2;
                width = height;
            } else {
                startY = (height - width) / 2;
                height = width;
            }
            var image = image.getSubimage(startX, startY, width, height);
            // ImageIO.write(image, "jpg", new File("C:\\Users\\nutiu\\IdeaProjects\\untitled\\src\\test\\java\\main\\resources\\debug.jpg"));

            // Resize image
            var resizedImage = image.getScaledInstance(224, 224, 4);

            // Process image
            BufferedImage scaledImage = new BufferedImage(224, 224, BufferedImage.TYPE_4BYTE_ABGR);
            scaledImage.getGraphics().drawImage(resizedImage, 0, 0, null);



            for (var y = 0; y < scaledImage.getHeight(); y++) {
                for (var x = 0; x < scaledImage.getWidth(); x++) {
                    int pixel = scaledImage.getRGB(x,y);

                    // Get RGB values
                    tensorData[0][0][y][x] = (((pixel >> 16) & 0xFF) / 255f - mean[0]) / standardDeviation[0];
                    tensorData[0][1][y][x] = (((pixel >> 16) & 0xFF) / 255f - mean[1]) / standardDeviation[1];
                    tensorData[0][2][y][x] = (((pixel >> 16) & 0xFF) / 255f - mean[2]) / standardDeviation[2];
                }
            }


            return tensorData;
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }

    public void run() throws OrtException {
        System.out.println("Onnx Runtime Java Image Prediction");

        // 1. Load model.
        var env = OrtEnvironment.getEnvironment();
        var session = env.createSession(this.modelPath, new OrtSession.SessionOptions());

        // Get input and output names
        var inputName = session.getInputNames().iterator().next();
        var outputName = session.getOutputNames().iterator().next();

        // 2. Create input tensor
        OnnxTensor inputTensor = OnnxTensor.createTensor(env, processImage(this.imagePath));

        // 3. Run the model.
        var inputs = Map.of(inputName, inputTensor);
        var results = session.run(inputs);

        // 4. Get output tensor
        var outputTensor = results.get(outputName);

        if (outputTensor.isPresent()) {
            // 5. Get prediction results
            float[][] floatBuffer = (float[][]) outputTensor.get().getValue();

            ArrayList<String> predictions = new ArrayList<String>();

            // filter buffer by treashold
            for (int i = 0; i < floatBuffer[0].length; i++) {
                if (floatBuffer[0][i] > -0.5) {
                    predictions.add(String.format("%s: %f - %s", i, floatBuffer[0][i], Categories.CATEGORIES.get(i)));
                }
            }

            // Print results
            System.out.println("Predictions: ");
            for (String prediction : predictions) {
                System.out.println(prediction);
            }
        } else {
            System.out.println("Failed to predict!");
        }
    }
}